Weby shortcut
ppgime logo
ime logo

Publicações

Atualizado em 24/11/18 20:22.

Aceitos 

  1. da Silva, Edcarlos.; Quasilinear elliptic problems involving the logarithmic function. Journal of Mathematical Analysis and Applications (Print), 2016.
  2. Carvalho, M. L. M.; GONCALVES, JOSE V. A.; SANTOS, C. A. P. . About positive $W_{loc}^{1,\Phi}(\Omega)$-solutions to quasilinear elliptic problems with singular semilinear term. Topological Methods in Nonlinear Analysis, 2019.
  3. M. L. M. CARVALHO, J. V. GONCALVES, C. GOULART, AND O. H. MIYAGAKI, MULTIPLICITY OF SOLUTIONS FOR A NONHOMOGENEOUS QUASILINEAR ELLIPTIC PROBLEM WITH CRITICAL GROWTH, Communications on Pure and Applied Analysis, 2018.
  4. Il’yasov, Yavdat; Valeev, Nurmukhamet . On nonlinear boundary value problem corresponding to $N$-dimensional inverse spectral problem. J. Differential Equations. 2018
  5. E. D. da Silva, M. L. M. Carvalho, J. V. Gonçalves, C. Goulart,Critical quasilinear elliptic problems using concave-convex nonlinearities, Annali di Matematica Pura ed Applicata, 2019
  6. YANG, M.; E. D. SilvaMaxwell L. Silva; ALBUQUERQUE, J. C. . On the critical cases of linearly coupled Choquard systems. APPLIED MATHEMATICS LETTERS, 2019.
  7. SILVA, E. D.; YANG, M. ; GAO, F. ; Jiazheng Zhou . Existence of solutions for critical Choquard equations via the concentration compactness method. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018.
  8. SILVA, E. D., Carvalho, M. L., Albuquerque, J. C., REVISED REGULARITY RESULTS FOR QUASILINEAR ELLIPTIC PROBLEMS DRIVEN BY THE $\Phi$-LAPLACIAN OPERATOR, Manuscritpta Mathematica, (2019).

Publicados

2018

  1. CARVALHO, MARCOS L.; Gonçalves, José V.; Santos, C. A. P.; Quasilinear elliptic systems with convex-concave singular terms and Phi-Laplacian Operator. Differential and Integral Equations, v. 31, 231-256, 2018.
  2. J. C. DA MOTA and A. J. SOUZA, Multiple traveling waves for dry forward combustion through porous medium, SIAM J. Appl. Math. v. 78(2), 1056-1077, 2018.
  3. Carvalho, M. L. M.; Gonçalves, J. V. A.; Silva, E. D.; SANTOS, C. A. P.; A type of Brézis-Oswald problem to the Phi-Laplacian operator with very singular term, Milan Journal of Mathematics 86, 53-80, 2018.
  4. SILVA, K. O.; MACEDO, A. C. . Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity. JOURNAL OF DIFFERENTIAL EQUATIONS, 1894-1921, 2018.
  5. ILYASOV, YAVDAT. ; SILVA, KAYE O. . On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,  2925-2935,2018.
  6. Silva, Kaye; Macedo, AbielOn the extremal parameters curve of a quasilinear elliptic system of differential equations. NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 4.

2017

  1. SILVA, EDCARLOS D.; FURTADO, M.F.; Maxwell L. Silva. Existence of solution for a generalized quasilinear elliptic problem. Journal of Mathematical Physics, v. 58, p. 031503, 2017.
  2. SILVA, EDCARLOS D.; FURTADO, M.F ; RUVIARO, R., Semilinear elliptic problems with combined nonlinearities on the boundary. Annali di Matematica Pura ed Applicata, v. 1, p. 1-15, 2017.
  3. SEVERO, UBERLANDIO B. ; GLOSS, ELISANDRA ; da Silva, Edcarlos D. On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms. JOURNAL OF DIFFERENTIAL EQUATIONS, v. 01, p. 1-23, 2017.
  4. CARVALHO, M. L. M. ; SILVA, E. D. ; J. V. A. Goncalves ; CORREA, F. J. S. A., Sign Changing Solutions for Quasilinear Superlinear Elliptic Problems. Quarterly Journal of Mathematics,  v. 68, p. 391-420, 2017.
  5. da Silva, Edcarlos; Calvacante, T. R.;  Multiplicity of solutions for fourth order superlinear elliptic problems under Navier conditions,  EJDE, 2017.
  6.  DA MOTA, J.C., SANTOS, M. M., SANTOS, R. A., Cauchy problem for a combustion model in a porous medium with two layers; Monatshefte für Mathematik, 2017. DOI 10.1007/s00605-017-1114-2
  7. ALMEIDA, M. F. ; FERREIRA, L. C. F. ; LIMA, L. S. M. . Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space. MATHEMATISCHE ZEITSCHRIFT, v. 287, p. 735-750, 2017.
  8. GONÇALVES, J. V.; MARCIAL, M. R.; MIYAGAKI, O. H.; Singular nonhomogeneous quasilinear elliptic equations with a convection term. MATHEMATISCHE NACHRICHTEN, Volume 290(14-15), 2280–2295, 2017.

2016

  1. CUNHA, ALYSSON; PASTOR, ADEMIR. The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces. Journal of Differential Equations (Print), v. 261, p. 2041-2067, 2016.
  2. CARVALHO, M. L. M. ; SILVA, EDCARLOS D. DA ; GOULART, C., QUASILINEAR ELLIPTIC PROBLEMS WITH CONCAVE-CONVEX NONLINEARITIES. Communications in Contemporary Mathematics, v. 1, p. S0219199716500504-25, 2016.
  3. Goncalves, Jose Valdo; MARCIAL, M. R.; MIYAGAKI, O. H., Topological structure of the solution set of singular equations with sign changing terms under Dirichlet boundary condition. Topological Methods in Nonlinear Analysis, v. 47, p. 73-89, 2016.
  4. ALVES, CLAUDIANOR O.; BARREIROY, JOSÉ L. P.; GONÇALVES, JOSÉ VALDO. Multiplicity of solutions of some quasilinear equations in ${mathbb{R}^{N}}$ with variable exponents and concave-convex nonlinearities. Topological Methods in Nonlinear Analysis, v. 47, p. 529-559, 2016.
  5. CORRÊA, FRANCISCO JÚLIO S. A.; CARVALHO, MARCOS L. M.; GONÇALVES, JOSÉ VALDO A.; SILVA, KAYE O. On the Existence of Infinite Sequences of Ordered Positive Solutions of Nonlinear Elliptic Eigenvalue Problems. Advanced Nonlinear Studies, v. 16, p. 439-458, 2016.
  6. FERREIRA, L. C. F.; LIMA, L. S. M. Global well-posedness and symmetries for dissipative active scalar equations with positive-order couplings. Publicacions Matemàtiques, v. 60, p. 525-550, 2016.

2015

  1. DO Ó, JOÃO MARCOS ; MACEDO, ABIEL COSTA. Adams type inequality and application for a class of polyharmonic equations with critical growth. Advanced Nonlinear Studies, v. 15, p. 867-888, 2015.
  2. da Silva, Edcarlos D.; RIBEIRO, B. C., Resonant-Superlinear elliptic problems using variational methods. Advanced Nonlinear Studies, v. 15, p. 157-170, 2015.
  3. CARVALHO, M.L.M. ; GONCALVES, JOSE V.A. ; DA SILVA, E.D. . On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications (Print), v. 1, p. 1-23, 2015.
  4. FURTADO, M.F ; da Silva, Edcarlos D. . Nonquadraticity conditions on superlinear problems. Springer, v. 1, p. 77/90-90, 2015.
  5. FURTADO, MARCELO F. ; SILVA, EDCARLOS D. ; SILVA, MAXWELL L. Quasilinear elliptic problems under asymptotically linear conditions at infinity and at the origin. Zeitschrift fur Angewandte Mathematik und Physik (Printed ed.), v. 66, p. 277-291, 2015.
  6. FURTADO, MARCELO F. ; SILVA, EDCARLOS D. . Superlinear elliptic problems under the non-quadraticity condition at infinity. Proceedings. Section A. Mathematics, v. 145, p. 779-790, 2015.
  7. CORRÊA, FRANCISCO JULIO S.A. ; CARVALHO, MARCOS L. ; GONCALVES, J.V.A. ; SILVA, KAYE O. Positive solutions of strongly nonlinear elliptic problems. Asymptotic Analysis, v. 93, p. 1-20, 2015.
  8. ALVES, CLAUDIANOR O. ; Goncalves, Jose V. A. ; SILVA, KAYE O. . Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations. Zeitschrift fur Angewandte Mathematik und Physik (Printed ed.), v. 66, p. 2601-2623, 2015.
  9. ALVES, CLAUDIANOR O. ; CARVALHO, MARCOS L. M. ; GONÇALVES, JOSÉ V. A. . On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle. Communications in Contemporary Mathematics, v. 17, p. 1450038-35, 2015.

 2014

  1. DO Ó, JOÃO MARCOS ; MACEDO, ABIEL COSTA . Concentration-compactness principle for an inequality by D. Adams. Calculus of Variations and Partial Differential Equations, v. 51, p. 195-215, 2014.
  2. de PAIVA, F. O. V. ; da Silva, Edcarlos D. . Landesman-lazer type conditions and multiplicity results for nonlinear elliptic problems with neumann boundary values. Acta Mathematica Sinica. English Series (Print), v. 30, p. 229-250, 2014.
  3. da Silva, Edcarlos D.; FURTADO, M.F ; SILVA, M. L. . Quasilinear Schrodinger equations with asymptotically linear nonlinearities. Advanced Nonlinear Studies, v. 3, p. 671-686, 2014.
  4. ALVES, CLAUDIANOR O. ; Gonçalves, José V. ; SANTOS, JEFFERSON A., Strongly nonlinear multivalued elliptic equations on a bounded domain. Journal of Global Optimization, v. 58, p. 565-593, 2014.
  5. Goncalves, J. V.; CARVALHO, M. L. . Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces. Journal of Convex Analysis, v. 21, p. 201-218, 2014.
  6. FERREIRA, L. C. F. ; LIMA, L. S. M. . Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. Monatshefte fur Mathematik (Print), v. 175, p. 491-509, 2014.
  7. CUNHA, ALYSSON; PASTOR, ADEMIR. The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications (Print), v. 417, p. 660-693, 2014.
  8. MATOS, V. ; AZEVEDO, A. V. ; DA MOTA, J. C. ; MARCHESIN, D., Bifurcation under parameter change of Riemann solutions for nonstrictly hyperbolic systems. Zeitschrift fur Angewandte Mathematik und Physik  66  1413-1452, 2015.
  9. Calixto, Wesley Pacheco ; PAULO COIMBRA, A. ; MOTA, JESUS CARLOS DA ; WU, MARCEL ; DA SILVA, WANDER G. ; ALVARENGA, BERNARDO ; BRITO, LEONARDO DA CUNHA ; ALVES, AYLTON JOSE ; DOMINGUES, ELDER GERALDO ; NETO, DAYWES PINHEIRO . Troubleshooting in geoelectrical prospecting using real-coded genetic algorithm with chromosomal extrapolation. International Journal of Numerical Modelling (Print), 28: 78–95, 2015.
  10. CALIXTO, W. P. ; PEREIRA, T. M. ; DA MOTA, J. C. ; ALVES, A. J. ; DOMINGUES, E. G. ; DOMINGOS, J. L. ; COIMBRA, A. P. ; ALVARENGA, B. . Desenvolvimento de Operador Matemático para Algoritmos de Otimização Heurísticos Aplicado a Problema de Geoprospecção. Tendências em Matemática Aplicada e Computacional, v. 15, p. 01-24, 2014.

2013

  1. Edcarlos da Silva; SEVERO, U. . On the existence of standing wave solutions for a class of quasilinear Schrödinger systems. Journal of Mathematical Analysis and Applications (Print), v. 412, p. 763-775, 2013.
  2. SILVA, E. A. B. E. ; SILVA, Maxwell L. . Continuous dependence of solutions for indefinite semilinear elliptic problems. Electronic Journal of Differential Equations, v. 2013, p. 1-17, 2013.
2012
  1. IORIO JUNIOR, R. J. ; M. Molina ; ALARCON, Eduardo Arbieto . On the Cauchy problem associated to the Brinkman Flow in R^n. Applicable Analysis and Discrete Mathematics, v. 6, p. 214-237, 2012.
2011
  1. J. V. A. Goncalves ; da Silva, Edcarlos D. ; Maxwell L. Silva . On positive solutions for a fourth order asymptotically linear elliptic equation under Navier boundary conditions. Journal of Mathematical Analysis and Applications (Print), v. 384, p. 387-399, 2011.
  2. Vitoriano e Silva, Fábio. On the steady viscous flow of a nonhomogeneous asymmetric fluid. Annali di Matematica Pura ed Applicata, v. 192, p. 665-672, 2011.
  3. DA MOTA, J. C.; SANTOS, M. M. . An Application of the Monotone Iterative Method to a Combustion Problem in Porous Media. Nonlinear Analysis: Real World Applications, v. 12, p. 1192-1201, 2011.
  4. CALIXTO, W. P. ; DA MOTA, J. C. ; ALVARENGA, B. P. . Methodology for the reduction of parameters in the inverse transformation of Schwarz-Christoffel applied to electromagnetic devices with axial geometry. International Journal of Numerical Modelling (Print), v. 24, p. 568-582, 2011.
  5. Goncalves, J. V. A.; REZENDE, M. C. ; Santos, C. A. . Positive solutions for a mixed and singular quasilinear problem. Nonlinear Analysis, v. 74, p. 132-140, 2011.
  6. Abrantes Santos, J. ; ALVES, C. O. ; Goncalves, J. V. A. . On Multiple Solutions for Multivalued Elliptic Equations under Navier Boundary Conditions. Journal of Convex Analysis, v. 18, p. 627-644, 2011.

2010

  1. Goncalves, J. V.; Silva F. K.; Solutions of quasilinear elliptic equations in RN decaying at infinity to a non-negative number. Complex variables and elliptic equations (Print), v. 55, p. 549-571, 2010.
  2. Goncalves, J. V.; SILVA, F. K.; Existence and Non-existence of Ground State Solutions for Elliptic Equations with a Convection Term. Nonlinear Analysis, v. 72, p. 904-915, 2010.
  3. CORREA, F. J. ; Goncalves, J. V. A.; Angelo Roncalli.; On a class of fourth order nonlinear elliptic equations under Navier boundary conditions. Analysis and Applications, v. 8, p. 185-197, 2010.
  4. Goncalves, J. V. A.; Jiazheng Zhou.; Remarks on existence of large solutions for $p$-Laplacian equations with strongly nonlinear terms satisfying the Keller-Osserman condition. Advanced Nonlinear Studies, v. 10, p. 757-769, 2010.
  5. CALIXTO, W. P.; ALVARENGA, B. P.; DA MOTA, J. C.; WU. M. (Marcel Wu) ; BRITO, L. C.; ALVES, A. J.; MARTINS NETO, L.; ANTUNES, C. F. R. L.; Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization. Mathematical Problems in Engineering (Print), v. 2010, p. 1-19, 2010.
  6. da Silva, Edcarlos D.; Multiplicity of Solutions for Gradient Systems Using Landesman-Lazer Conditions. Abstract and Applied Analysis, v. 2010, p. 1-22, 2010.
  7. da Silva, Edcarlos D.; Multiplicity of solutions for gradient systems. Electronic Journal of Differential Equations, v. Vol. 2, p. 1/64-15, 2010.
  8. da Silva, Edcarlos D.; Multiplicity of solutions for gradient systems with strong resonance at higher eigenvalues?. Nonlinear Analysis, v. 72, p. 3918-3928, 2010.
  9. da Silva, Edcarlos D.; Quasilinear elliptic problems under strong resonance conditions. Nonlinear Analysis, v. 73, p. 2451-2462, 2010.